首页> 外文OA文献 >On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields
【2h】

On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields

机译:关于小有限域上深度3的深度减少限制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, Gupta et.al. [GKKS2013] proved that over Q any $n^{O(1)}$-variateand $n$-degree polynomial in VP can also be computed by a depth three$\Sigma\Pi\Sigma$ circuit of size $2^{O(\sqrt{n}\log^{3/2}n)}$. Over fixed-sizefinite fields, Grigoriev and Karpinski proved that any $\Sigma\Pi\Sigma$circuit that computes $Det_n$ (or $Perm_n$) must be of size $2^{\Omega(n)}$[GK1998]. In this paper, we prove that over fixed-size finite fields, any$\Sigma\Pi\Sigma$ circuit for computing the iterated matrix multiplicationpolynomial of $n$ generic matrices of size $n\times n$, must be of size$2^{\Omega(n\log n)}$. The importance of this result is that over fixed-sizefields there is no depth reduction technique that can be used to compute allthe $n^{O(1)}$-variate and $n$-degree polynomials in VP by depth 3 circuits ofsize $2^{o(n\log n)}$. The result [GK1998] can only rule out such a possibilityfor depth 3 circuits of size $2^{o(n)}$. We also give an example of an explicit polynomial ($NW_{n,\epsilon}(X)$) inVNP (not known to be in VP), for which any $\Sigma\Pi\Sigma$ circuit computingit (over fixed-size fields) must be of size $2^{\Omega(n\log n)}$. Thepolynomial we consider is constructed from the combinatorial design. Aninteresting feature of this result is that we get the first examples of twopolynomials (one in VP and one in VNP) such that they have provably strongercircuit size lower bounds than Permanent in a reasonably strong model ofcomputation. Next, we prove that any depth 4$\Sigma\Pi^{[O(\sqrt{n})]}\Sigma\Pi^{[\sqrt{n}]}$ circuit computing$NW_{n,\epsilon}(X)$ (over any field) must be of size $2^{\Omega(\sqrt{n}\logn)}$. To the best of our knowledge, the polynomial $NW_{n,\epsilon}(X)$ is thefirst example of an explicit polynomial in VNP such that it requires$2^{\Omega(\sqrt{n}\log n)}$ size depth four circuits, but no known matchingupper bound.
机译:最近,Gupta等人。 [GKKS2013]证明,在Q上,VP中的任何$ n ^ {O(1)} $变量和$ n $度多项式也可以通过深度为3的$ \ Sigma \ Pi \ Sigma $电路来计算,大小为$ 2 ^ { O(\ sqrt {n} \ log ^ {3/2} n)} $。在固定大小的有限字段上,Grigoriev和Karpinski证明了计算$ Det_n $(或$ Perm_n $)的任何$ \ Sigma \ Pi \ Sigma $电路的大小都必须为$ 2 ^ {\ Omega(n)} $ [GK1998]。在本文中,我们证明在固定大小的有限域上,用于计算大小为$ n \乘以n $的$ n $通用矩阵的迭代矩阵乘法多项式的$ \ Sigma \ Pi \ Sigma $电路的大小必须为$ 2 ^ {\ Omega(n \ log n)} $。此结果的重要性在于,在固定大小的字段上,没有深度缩减技术可用于通过深度3个大小的电路来计算VP中所有$ n ^ {O(1)} $变量和$ n $度多项式$ 2 ^ {o(n \ log n)} $。结果[GK1998]只能排除大小为$ 2 ^ {o(n)} $的深度3电路的这种可能性。我们还给出了一个在VNP中的显式多项式($ NW_ {n,\ epsilon}(X)$)的示例(未知在VP中),为此,任何$ \ Sigma \ Pi \ Sigma $电路计算(通过size字段)的大小必须为$ 2 ^ {\ Omega(n \ log n)} $。我们考虑的多项式是根据组合设计构造的。这个结果的一个有趣的特征是,我们得到了两个多项式的第一个例子(一个在VP中,一个在VNP中),使得它们在合理强大的计算模型中具有比永久性更强的电路尺寸下界。接下来,我们证明任何深度4 $ \ Sigma \ Pi ^ {[O(\ sqrt {n})}} \ Sigma \ Pi ^ {[\ sqrt {n}]} $电路计算$ NW_ {n,\ epsilon }(X)$(在任何字段上)的大小必须为$ 2 ^ {\ Omega(\ sqrt {n} \ logn)} $。据我们所知,多项式$ NW_ {n,\ epsilon}(X)$是VNP中显式多项式的第一个示例,因此需要$ 2 ^ {\ Omega(\ sqrt {n} \ log n)} $ size深度为四个电路,但没有已知的匹配上限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号